Correlation of miniature synaptic activity and evoked release probability in cultures of cortical neurons.

نویسندگان

  • O Prange
  • T H Murphy
چکیده

Spontaneous miniature synaptic activity is caused by action potential (AP)-independent release of transmitter vesicles and is regulated at the level of single synapses. In cultured cortical neurons we have used this spontaneous vesicle turnover to load the styryl dye FM1-43 into synapses with high rates of miniature synaptic activity. Automated selection procedures restricted analysis to synapses with sufficient levels of miniature activity-mediated FM1-43 uptake. After FM1-43 loading, vesicular FM1-43 release in response to AP stimulation was recorded at single synapses as a measure of release probability. We find that synapses with high rates of miniature activity possess significantly enhanced evoked release rates compared with a control population. Because the difference in release rates between the two populations is [Ca(2+)](o)-dependent, it is most likely caused by a difference in release probability. Within the subpopulation of synapses with high miniature activity, we find that the probabilities for miniature and AP-evoked release are correlated at single synaptic sites. Furthermore, the degree of miniature synaptic activity is correlated with the vesicle pool size. These findings suggest that both evoked and miniature vesicular release are regulated in parallel and that the frequency of miniature synaptic activity can be used as an indicator for evoked release efficacy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noradrenergic System Increases Miniature Excitatory Synaptic Currents in the Barrel Cortex

Introduction: Neurons in layer II and III of the somatosensory cortex in rats show high frequency (33 ± 13 Hz) of miniature excitatory postsynaptic currents (mEPSCs) that their rates and amplitudes are independent of sodium channels. There are some changes in these currents in neurodegenerative and psychological disorders. Regarding to well known roles of the neuromodulatory brain systems in...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Presynaptic release probability is increased in hippocampal neurons from ASIC1 knockout mice.

Acid-sensing ion channels (ASICs) are H(+)-gated channels that produce transient cation currents in response to extracellular acid. ASICs are expressed in neurons throughout the brain, and ASIC1 knockout mice show behavioral impairments in learning and memory. The role of ASICs in synaptic transmission, however, is not thoroughly understood. We analyzed the involvement of ASICs in synaptic tran...

متن کامل

Effects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats

Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex b...

متن کامل

Autapses and networks of hippocampal neurons exhibit distinct synaptic transmission phenotypes in the absence of synaptotagmin I.

Synaptotagmin-I (syt-I) is required for rapid neurotransmitter release in mouse hippocampal neurons. However, contradictory results have been reported regarding evoked and spontaneous secretion from syt-I knock-out (KO) neurons. Here, we compared synaptic transmission in two different hippocampal neuron preparations: autaptic cultures in which a single isolated cell innervates itself, and disso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 15  شماره 

صفحات  -

تاریخ انتشار 1999